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Received 9 May 1989 

Abstract. The phonon-limited resistivity of aluminium has been calculated using a local, 
first-principles pseudopotential which has been useful in the calculation of other properties 
of aluminium. This pseudopotential is obtained from the induced electron density around 
an aluminium ion in an electron gas. From this pseudopotential, the interionic potential, the 
phonons (which are calculated by the self-consistent harmonic approximation) and finally 
the phonon-limited resistivity have been obtained. The results are very similar to those 
obtained using a phenomenological, Heine-Abarenkov pseudopotential for aluminium. 

1. Introduction 

The pseudopotential formulation has been very useful in the calculation of the properties 
of solids. Pseudopotentials may be phenomenological or may be obtained from first 
principles. In the former case the parameters used to define the pseudopotential are 
usually determined by fitting some electronic properties, predicted with the pseudo- 
potential, to experimental information such as the electrical resistivity of the metal, 
the shape of the Fermi surface, or spectroscopic data. It is clear at present that a 
pseudopotential determined in an empirical way cannot always be regarded as weak [l], 
so that its use in obtaining the interionic potential and, from this, the phonons to be used 
in the calculation of the resistivity is not justified. 

In this work we use a first-principles, local pseudopotential which is constructed 
following a method proposed by Manninen et a1 [2], who followed the method of Rasolt 
and Taylor [3], with some differences. 

In the approach of Rasolt and Taylor, the displaced electronic density around an ion 
in an electron gas is calculated using a non-linear screening theory and the full electron- 
ion pseudopotential. Then , a non-local pseudopotential is selected in order to reproduce, 
as close as possible, the non-linear displaced electronic density by linear response theory, 
except in the vicinity of the ion. In this way the non-linear effects are partly included in 
the pseudopotential. The interionic potentials calculated using these pseudopotentials 
have been used with success to calculate phonon dispersion curves in simple metals 
[4,5], and the resistivity for Rb and Cs [6], for low temperatures. 

In the method of Manninen et al, the starting point is also the displaced electronic 
density around an impurity in an electron gas, which has been calculated by non-linear 
screening theory. Then a local pseudopotential is defined in such a way that, in linear 
response theory, this displaced electronic density is reproduced exactly, except in a small 
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region close to the ion. In this region a modelling of the electronic density is done in 
order to remove all the wiggles of the density. This modelled density plays the role of 
the pseudodensity. The pseudopotential form factor is given in terms of the Fourier 
transform of this pseudodensity and a dielectric function which satisfies the com- 
pressibility theorem. In this way, some of the non-linear screening effects are also 
included into the pair potential calculated from this pseudopotential. Manninen et a1 
obtained the pseudopotential for aluminium, considering two models to calculate the 
displaced electron density using non-linear screening theory. In the first model they 
calculated the screening of an aluminium nucleus in an electron gas. In the second they 
considered the nucleus embedded in a jellium vacancy. This second model gave much 
better results for the cohesion energy of the metal and for the equilibrium lattice 
constant, bulk modulus, vacancy formation energy and electrical resistivity of the liquid 
phase. In a more recent work, Jena et a1 [7] made a calculation of the phonon dispersion 
curve of aluminium using the interionic potential for this material reported by Manninen 
er a1 [2], for the model of the nucleus embedded in a jellium vacancy, obtaining good 
agreement with the experimental results. 

In previous work we obtained this kind of pseudopotential, with the model of the 
nucleus embedded in a jellium vacancy, and used it with success to calculate the lattice 
specific heat of lithium [8] and aluminium [9], the pressure dependence of the lattice 
specific heat of lithium [lo] and aluminium [9], and also to calculate the pressure 
dependence of the elastic constants of aluminium and lithium [ll]. 

In this work we want to explore the applicability of the same kind of pseudopotential 
to the calculation of transport properties. In particular, we are interested in comparing 
the prediction of the phonon-limited resistivity of aluminium using this pseudopotential 
with the prediction made using a phenomenological, Heine-Abarenkov pseudo- 
potential and experimental results. 

In $ 2  we describe briefly the method of Manninen er a1 to construct the local, 
first-principles pseudopotential from the displaced electron density. We also show 
the dielectric function used in this work and the vertex correction for the screened 
pseudopotential form factor used for the calculation of the phonon-limited resistivity. 

Section 3 is used to describe the phonons and the expression employed for the 
phonon-limited resistivity. Our results and conclusions are given in § 4. We have used 
atomic units (i.e. the magnitude of the electronic charge = electron mass = h = 1). The 
energy is given in double Rydbergs. 

2. The pseudopotential 

The unscreened pseudopotential form factor, v(q) ,  is related to the Fourier transform 
of the induced charge pseudodensity, 6n(q),  by 

4 4 )  = 4nwq)E(q) /q2[1 - 4q) l  (1) 
where ~ ( q )  is the dielectric response function of the electron gas. 

6n(q) was calculated using the induced electronic density, 6n(r ) ,  which was com- 
puted by the density functional formalism [12, 131 with a smoothing in a region near the 
origin [2]. In this smoothing, the conditions that the electronic charge is conserved and 
that 6n(r)  and (a /ar ) [6n(r ) ]  are continuous are imposed [2]. Then, equation (1) is used 
to obtain an effective local pseudopotential, which in linear response will give the exact 
induced displaced electronic density outside the region of smoothing. In this way some 
of the non-linear screening effects are included into the pair potential calculated from 
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this pseudopotential. It should be remarked that in the pseudopotential formulation, 
the pseudodensity must not contain wiggles near the ion, and the induced density 
calculated from density functional theory contains those wiggles in that region due to 
the orthogonalisation of conduction states to core orbitals. 

From pseudopotential theory and linear response theory [ 141, the interionic potential 
is given by 

where r is the separation between the two ions and Z is the charge of the metal ion. 

density is calculated by taking the difference [2] 
For the model of the nucleus embedded in a jellium vacancy, the induced electronic 

an(r) = n(r) - nv(r> - 2 x  / q b ( r ) l 2  (3) 
b 

where n(r) is calculated with the total charge density corresponding to a nucleus located 
at the centre of a vacancy in jellium and nv(r) is the electron density around a jellium 
vacancy alone. Charge neutrality of the metal is a necessary condition. The bound states 
are represented by q b .  

The dielectric function used satisfies, by construction, the compressibility theorem 
which is important in connection with the interionic potential [2, 151. The dielectric 
function is [2,16] 

where 

G,(q) is the usual Lindhard polarisability, kTF is the Fermi-Thomas screening constant 
and L is the ratio 

In equation (6) p is the chemical potential, E F  is the Fermi energy and 

where pxc(rs) is the exchange-correlation contribution to the chemical potential. 

4 q )  = 1 + (4Jc/q2)G(q) 

G(q) = G O ( q ) / [ l  - (4n/k%F>c0(q)(1 - L) l .  

(4) 

( 5 )  

= (ap/drs)/(dEFdrs). (6) 

p(rs>  = EF(rs) + ~ x c ( ~ s )  

On the other hand, the screened pseudopotential form factor, W(q),  given by 

W q )  = ( 4 4 ) / & ( 4 ) ) W  (7) 
is important in the calculation of the resistivity. The vertex correction is C(q)  which, in 
the simplest approximation for a local pseudopotential, is [16, 171 

Using the expression of Gunnarson and Lundqvist [ 181 for the exchange-correlation 
(which is the one we used in the calculation of the induced electronic density), the 
corresponding value of L is 

3. Resistivity and phonons 

c(q) = - (4n/k$F)GO(q)(1 - L)l. 

L = 1 - ( 4 / q ~ c ~ ) ' / ~ r , ( l  + [0.6213/(rS + 11.4)]rs}. (8) 

The expression used in this work for the resistivity, p( T ) ,  as function of the temperature, 
T ,  has been derived and discussed by several authors [19,20]: 

where W(q) is the screened pseudopotential form factor. E ( q ,  A) is the polarisation 
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vector of the lattice vibration with wavevector q and frequency w(q,  A), p is l / k B T ,  kB 
being the Boltzmann constant, and A is a constant given by 

where M is the ion mass and VF and k F  are the electron velocity and wavevector at the 
Fermi level, respectively. 

The integral in equation ( 9 )  is over a sphere of radius 2kF. The pseudopotential 
describing electron scattering at the Fermi surface is assumed to depend only on momen- 
tum transfer q. The Fermi surface is taken as spherical so that the two surface integrals 
describing transitions from an initial to a final state on the Fermi surface can be converted 
to a three-dimensional integral over q .  A one-phonon approximation is considered 
when equation (9) is derived [19,20].  Since much of the aluminium Fermi surface is 
free-electron-like, it is expected that multiple-plane-wave effects might not be very 
important. In fact, one-plane-wave calculations with a spherical Fermi surface give a 
reasonable description of the experimental data of the resistivity of aluminium at high 
temperatures (between -70 and 140 K) using a Heine-Abarenkov pseudopotential 
[20,21].  At low temperatures this same pseudopotential can be used but it is necessary 
to consider the Fermi surface and the electron-phonon matrix elements in greater 
detail [21,22].  For temperatures above 140 K we should expect that anharmonic effects 
become more important. 

On the other hand, it is not our aim in this work to make a precise calculation of 
the phonon-limited resistivity of aluminium for the whole range of temperatures. For 
simplicity, we are interested in the temperature range (see [21])  for which the expression 
for the resistivity, given by equation (9), is applicable for comparison with experimental 
data. We are also interested in a comparison of the prediction made using our first- 
principles pseudopotential, and equation (9), with the results obtained with a phenom- 
enological, Heine-Abarenkov pseudopotential, and the same expression for the res- 
istivity. We believe that this will be sufficient to explore the applicability of our 
pseudopotential to the calculation of the phonon-limited resistivity of aluminium. A 
careful calculation of this property, for low temperatures, using our pseudopotential 
can be performed following the method given in [21],  where a Heine-Abarenkov 
pseudopotential is employed. 

It is clear from equation ( 9 )  that we need information about the phonon frequencies 
and polarisation vectors, and that we also need the screened pseudopotential form 
factor. 

The interionic potential, given by equation (2), was obtained from the induced 
pseudodensity and the dielectric function from this interionic potential we calculated 
the phonons to be employed in the expression for the resistivity. The force constants 
associated with our interionic potential were calculated using the self-consistent har- 
monic approximation [23-251, 

The resulting set of self-consistent equations which must be solved in order to obtain 
the phonon dispersion curve and force constants for this approximation is as follows: 

A = 3 Q o / 1 6 M V ~ k ~  (10) 

4 ( k ) G w  x D,p(k)4  ( k )  (11) 
P 

where 
is 

is the component a o f  the polarisation vector en(k) and the dynamical matrix 

with 
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where p/  is the vector describing the displacement of atom 1 from its equilibrium position 
RI, and @.np(RI + p/) is the tensor derivative of the interatomic potential evaluated at 
RI + P/*  

Finally, 

where N is the number of ions and the sum is over the first Brillouin zone. 
To solve the set of self-consistent equations ( l l ) ,  (12), (13) and (14), we start with 

the frequencies generated by the harmonic approximation as the first trial. Then the 
convergence procedure is followed. 

To calculate all the phonon frequencies and polarisation vectors entering the 
expression for the resistivity (equation (9)) from the force constants obtained in the 
phonon dispersion curve, we followed the method of Gilat and Raubenheimer [26]. This 
method consists of solving the secular equations associated with the dynamical matrix 
only at a relatively small number of points in the irreducible first Brillouin zone. Then, 
by means of linear extrapolation the other phonon eigen-frequencies are extracted from 
within small cubes, each centred at one point. These cubes can be arranged to fill 
the entire irreducible first Brillouin zone and thus can yield the complete frequency 
distribution of the crystal. Simple translations of the vectors q are used to complete the 
integration region up to 2kF. 

4. Results and discussion 

In order to calculate the resistivity we started by obtaining the induced density shown in 
equation (3) using the density functional formalism. For this it is necessary to calculate 
the displaced electronic density around an aluminium nucleus embedded into a jellium 
vacancy and also the displaced electronic density around a vacancy alone. After this a 
smoothing of the density near the ion is done in order to construct the displaced electronic 
pseudodensity. In figure 1 we show the displaced electronic density calculated using 
equation (3) and the corresponding smoothed density. 

The next step was to calculate the Fourier transform of the pseudodensity. This was 
achieved using the asymptotic form for &(r) given by 

&(r)  = B cos(2kFr + q ) / r 3  
where the constants B and q~ were obtained using the last points in our calculation of 
6n(r). This asymptotic form was taken for distances larger than R,,, = 15.04ao, where 
a. is the Bohr radius (ao = 0.529 A). The accuracy of the Fourier transform was tested 
by taking the inverse Fourier transform of bn(q), and the resulting difference with 
respect to the original values of Sn(r) was less than 0.1% for each point. 

With 6n(q) and the dielectric function defined in 0 3 we could calculate the interionic 
potential using equation (2). From this interionic potential we found the force constants 
by the self-consistent harmonic approximation [23-251. Using these together with the 
method of Gilat and Raubenheimer [26] we obtained the phonon frequencies and 
polarisation vectors to be used in equation (9) to calculate the phonon-limited resistivity. 
The results are shown in figures 2 and 3. 
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Figure 1 .  Displaced electronic density (, . .) and displaced electronic pseudodensity obtained 
by smoothing the displaced electronic density(-). 
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Figure 2. Resistivity of aluminium for temperatures between 70 and 140 K: experimental 
results [27] (-); result of this work (---); result from equation (9) using a Heine- 
Abarenkov pseudopotential (taken from [21]) (. . .). 

As we have already mentioned, the expression used for the resistivity is adequate 
for a comparison with experimental data for temperatures between 70 and 140 K (see 
[21]). In figure 2 we show the results from our first-principles calculation compared with 
experimental results [27] and with the calculation of [21] from a Heine-Abarenkov 
pseudopotential for the same range of temperatures, using the same expression for the 
resistivity given in equation (9). This figure shows a reasonable agreement between our 
prediction and the experimental results and the results from the Heine-Abarenkov 
pseudopotential. We have already said that it is not our aim in this work to make a 
precise calculation of the phonon-limited resistivity of aluminium for the whole range 
of temperatures. We want only to assess the suitability of our pseudopotential for the 
calculation of this property of aluminium. 
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Figure 3. Resistivity of aluminium for temperatures between 20 and 140 K: experimental 
results [27] (-); result obtained from equation (9) using our pseudopotential (* * *). The 
chain curve is calculated by equation (9) and a Heine-Abarenkov pseudopotential [21]. The 
dotted curve is the result obtained using the scattering-time approximation, 15 plane waves 
for the electron-phonon interaction, the Heine-Abarenkov pseudopotential and a non- 
spherical Fermi surface [21]. Finally, the broken curve refers to a calculation similar to that 
of the dotted curve; the only difference is that the expression for the resistivity is from a 
variational approximation [21]. 

In figure 3 we show experimental values for the resistivity of aluminium for tem- 
peratures between 20 and 140 K, taken from [27]. We also show the predictions made 
using equation (9) with our pseudopotential and with a Heine-Abarenkov pseudo- 
potential (the latter is taken from [21]), for the same range of temperatures. We can see 
that these two are very similar. Also in figure 3 we show a more careful calculation, from 
[21], of the resistivity. In this calculation, the approximation of a spherical Fermi surface 
is no longer taken and, for the electron-phonon matrix element, 15 plane waves have 
been used to describe the electronic states. For the solution to the Boltzmann transport 
equation two approaches were taken. One was the scattering time approximation and 
the other was obtained from a variational principle [21]. The Heine-Abarenkov pseu- 
dopotential is again used in both approximations. The scattering-time approximation 
gave better results for temperatures below 70 K. However, for higher temperatures they 
are practically identical and both results are very similar to ours. 

From the foregoing we can say that our pseudopotential is adequate for the cal- 
culation of the phonon-limited resistivity of aluminium. A reasonable agreement with 
experimental results can be seen for the range of temperatures for which equation (9) is 
expected to be adequate (between 70 and 140 K) [21]. 

On the other hand, within the approximations implicit in equation (9) (which are not 
valid at low temperatures), the results obtained with our first-principles pseudopotential 
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and a Heine-Abarenkov pseudopotential are very similar and the latter were used 
successfully in [21] for a careful calculation of the phonon-limited resistivity of 
aluminium. 

Finally, it is reasonable to expect that our first-principles pseudopotential could 
also be used successfully in a careful calculation of the phonon-limited resistivity of 
aluminium for a much wider range of temperatures. 
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